Are you considering the purchase of an e-car, but don’t know whether the range and charging time will suit your everyday life? Consileon’s e-range calculator and charging time calculator gives you a realistic estimate, suitable for your driving behavior.

Minimize uncertainties before buying an e-car

The engines and transmissions of electric vehicles are much simpler than their counterparts in combustion engines. Wear, maintenance and workshop costs are correspondingly lower. Nevertheless, many potential buyers still have doubts about the suitability of electric vehicles for everyday use. They are particularly skeptical about the density of the charging network and the performance of the charging points.

Potential e-car customers often have many concerns that they deal with before making a purchase. How long is the range? How many years will the battery last? How long will it take to charge my new e-car? To answer these questions, OEMs, dealers and auto news websites have several ways to offer explanations for their customers. You can display tables, make comparisons, and write images and text.

A much more dynamic and interactive solution is to use a small app, which can be used as a microfrontend on your website.

E-Reichweiten- und Ladezeitrechner auf smartphone, Laptop und Tablet

This is where our e-range and charging time calculator comes in. It reveals how far your e-dream car will take you with a full battery and how long it will take to tap the power for your everyday routes. With information on boundary conditions such as outside temperature, driving style, route mix or type of charging station, you can adapt the calculation to your situation and get an indication of how your range will change.

calculate now

Use our app also on your website

Consileon develops web and microfrontend applications for you to integrate into your website. In addition to the e-range and charging time calculator shown here, we have also developed an e-mobility calculator that has been used by customers such as the Feser-Graf Group or the AvD. The designs can of course be individually adapted to your corporate design.
The apps are created by our nearshore developers from Poland. We use JavaScript libraries like React to create our frontend components.

Your advantages when using dynamic web applications
• High interaction with content and thus higher website dwell time of your users
• Complex contexts can be explained in a playful way
• Our web application can be integrated very easily via WordPress plugin

• Creation is more cost and time intensive than images and texts

How we calculate the range

The range is the quotient of the available capacity of the battery and the power consumption. Electricity consumption is primarily dependent on driving speed. According to the international WLTP consumption measurement method, an average of 46.5 km/h is calculated. Driving faster or slower on average shortens or extends the range.

In addition to the travel speed, the individual driving style also affects the range. Allegedly “sporty” acceleration drives up consumption. Relaxed, anticipatory driving, on the other hand, saves electricity. Experience shows that hectic driving reduces the operating range by at least ten percent compared with the WLTP value, while wise foresight extends it by up to five percent.

The outside temperature also influences battery performance. If you demand full power from the drive battery even in summer heat, you shorten its service life. Added to this is the power consumption of the automatic climate control system. The colder the weather, the less power the battery delivers. If you also switch on the heating, the range quickly drops to two-thirds of the WLTP value. The battery is also cooled or heated as needed to keep the operating temperature in the green zone.

The calculated range cannot be used to predict an exact, realistic range, but it does a good job of giving a sense of the factors on range and differences among e-vehicles.

WLTP values as a benchmark

Our calculator uses the standard values determined according to WLTP as a measure of consumption. WLTP stands for Worldwide harmonized Light vehicles Test Procedure and is used to measure fuel and electricity consumption as well as exhaust emissions including CO2. Valid in the European Union, Japan, South Korea and India, the procedure replaced the so-called New European Driving Cycle (NEDC) in September 2017. WLTP specifies an average of 46.5 km/h and a maximum of 131 km/h as the test speed. The test temperature is 23 degrees, in Europe it is also measured at 14 degrees.

It is unlikely that real drivers will drive exclusively within the measurement standard. That’s why our calculator asks you for your everyday driving data and uses it to calculate any deviations from the range and charging time according to WLTP.

This is how we calculate the charging time

The charging time depends on the capacity of the battery, the charge level, the charging power and the outside temperature. However, the charging power has the greatest effect. If you charge at a 350 kW fast charger with direct current, the battery is full in just under a quarter of an hour. At home, the car has to remain connected to the 11 kW wallbox all night. A typical battery would fill up to a third of its capacity overnight at a conventional household outlet, which really doesn’t provide enough power for an electric vehicle.

Drive batteries are optimized for an outside temperature of 20 degrees Celsius. Temperatures deviating from this increase or decrease the charging capacity and thus the charging time.

The charging curve during fast charging of electric cars is not constant, but varies depending on the battery level. The maximum charging power is usually reached at a lower charge level and then decreases as the battery fills up to protect the battery from damage. The exact charging curve is often not published by manufacturers, and actual charging power may vary under different conditions. Fluctuating charge rates are intentional to keep the battery in its optimum temperature zone and preserve its life. Different manufacturers have different charging strategies, and the stability of the charging curve over the entire charging time is crucial for the actual charging time.

Are you interested? Do you have any questions about the e-range calculator or microfronted apps?

If you are interested in one of our web applications, you can contact us easily and without obligation. We will then discuss your individual requirements and the further procedure together.

"*" indicates required fields

This field is for validation purposes and should be left unchanged.

Recommended automotive articles


Modern solutions for laboratories

Many laboratories hold on to old LIS because they believe they have no alternative, even though this harbours risks such as the loss of experts and rising maintenance costs.

Load More